(6x^2)+10x+3=0

Simple and best practice solution for (6x^2)+10x+3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x^2)+10x+3=0 equation:


Simplifying
(6x2) + 10x + 3 = 0

Reorder the terms:
3 + 10x + (6x2) = 0

Solving
3 + 10x + (6x2) = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
0.5 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '-0.5' to each side of the equation.
0.5 + 1.666666667x + -0.5 + x2 = 0 + -0.5

Reorder the terms:
0.5 + -0.5 + 1.666666667x + x2 = 0 + -0.5

Combine like terms: 0.5 + -0.5 = 0.0
0.0 + 1.666666667x + x2 = 0 + -0.5
1.666666667x + x2 = 0 + -0.5

Combine like terms: 0 + -0.5 = -0.5
1.666666667x + x2 = -0.5

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = -0.5 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = -0.5 + 0.6944444447

Combine like terms: -0.5 + 0.6944444447 = 0.1944444447
0.6944444447 + 1.666666667x + x2 = 0.1944444447

Factor a perfect square on the left side:
((x) + 0.8333333335)((x) + 0.8333333335) = 0.1944444447

Calculate the square root of the right side: 0.440958552

Break this problem into two subproblems by setting 
((x) + 0.8333333335) equal to 0.440958552 and -0.440958552.

Subproblem 1

(x) + 0.8333333335 = 0.440958552 Simplifying (x) + 0.8333333335 = 0.440958552 x + 0.8333333335 = 0.440958552 Reorder the terms: 0.8333333335 + x = 0.440958552 Solving 0.8333333335 + x = 0.440958552 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 0.440958552 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 0.440958552 + -0.8333333335 x = 0.440958552 + -0.8333333335 Combine like terms: 0.440958552 + -0.8333333335 = -0.3923747815 x = -0.3923747815 Simplifying x = -0.3923747815

Subproblem 2

(x) + 0.8333333335 = -0.440958552 Simplifying (x) + 0.8333333335 = -0.440958552 x + 0.8333333335 = -0.440958552 Reorder the terms: 0.8333333335 + x = -0.440958552 Solving 0.8333333335 + x = -0.440958552 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -0.440958552 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -0.440958552 + -0.8333333335 x = -0.440958552 + -0.8333333335 Combine like terms: -0.440958552 + -0.8333333335 = -1.2742918855 x = -1.2742918855 Simplifying x = -1.2742918855

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.3923747815, -1.2742918855}

See similar equations:

| (t-5)(t-5)= | | 3x-0=2x | | 4x-2x+6-x-5= | | 4p+4q-8(9p-5q)= | | (x^2)+3x+4=6 | | 7/7=a | | (t+81)(t-1)= | | 2w^2-5w=-33 | | 9x+36=3y | | x^2+4x-9=5 | | (x^2)-2x-13=0 | | -2e^5x/e^x | | N=-10n+5 | | (s^2)-9=0 | | (4x^2)+4x=15 | | 4.2=x/((0.3-x)(0.4-x)) | | (4x^2)+12x=27 | | -7n+2=-5n-10 | | (10x+9)(7x+7)= | | 6x=18x+(-52) | | 12(4t+1)-14=t-(t+1) | | -32-(-38)=x/4 | | 6(2-5)=(x+4) | | -10+2y=7x | | -27+22w=73 | | x^2-8x+dx-8d=0 | | 3G-5=2h-7forg | | (-2x+5)(-3x+4)= | | -3x-4=-5 | | 7r+8=13r+10 | | (5x+7)(x-2)= | | ×/4-9=-6 |

Equations solver categories